Minimum Degree Removal Lemma Thresholds

Zhihan Jin

ETH Zürich

Joint work with Lior Gishboliner and Benny Sudakov

Conjecture (Erdős-Simonovits '73)

If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G)$ is bounded.

Conjecture (Erdős-Simonovits '73)

If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G)$ is bounded.

Construction (Hajnal)

There are K_3 -free graphs G with $\delta(G) = (\frac{1}{3} - o(1))n$ and $\chi(G) \to \infty$.

Conjecture (Erdős-Simonovits '73)

If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G)$ is bounded.

Construction (Hajnal)

There are K_3 -free graphs G with $\delta(G) = (\frac{1}{3} - o(1))n$ and $\chi(G) \to \infty$.

Theorem (Thomassen '02)

If G is K₃-free and
$$\delta(G) \ge (\frac{1}{3} + \varepsilon)n$$
 then $\chi(G) \le C(\varepsilon)$.

Conjecture (Erdős-Simonovits '73)

If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G)$ is bounded.

Construction (Hajnal)

There are K_3 -free graphs G with $\delta(G) = (\frac{1}{3} - o(1))n$ and $\chi(G) \to \infty$.

Theorem (Thomassen '02)

If G is K₃-free and
$$\delta(G) \ge (\frac{1}{3} + \varepsilon)n$$
 then $\chi(G) \le C(\varepsilon)$.

Theorem (Brandt-Thomasse '11)

If G is K₃-free and $\delta(G) > \frac{n}{3}$ then $\chi(G) \leq 4$.

This is tight by Hajnal's construction.

Thomassen + Hajnal's construction $\implies \delta_{\chi}(K_3) = \frac{1}{3}$.

Thomassen + Hajnal's construction $\implies \delta_{\chi}(K_3) = \frac{1}{3}$.

Theorem (Goddard-Lyle, Nikiforov '11)

 $\delta_{\chi}(K_r) = \frac{2r-5}{2r-3}.$

Thomassen + Hajnal's construction $\implies \delta_{\chi}(K_3) = \frac{1}{3}$.

Theorem (Goddard-Lyle, Nikiforov '11)

 $\delta_{\chi}(K_r) = \frac{2r-5}{2r-3}.$

The Allen-Böttcher-Griffiths-Kohayakawa-Morris Theorem '13

Determines $\delta_{\chi}(H)$ for every H. If $\chi(H) = r$ then

$$\delta_{\chi}(\mathcal{H}) \in \left\{\frac{r-3}{r-2}, \frac{2r-5}{2r-3}, \frac{r-2}{r-1}\right\}$$

If G is K₃-free and $\delta(G) \ge (\frac{1}{3} + \varepsilon)n$ then $\chi(G) \le C(\varepsilon)$.

If G is K₃-free and
$$\delta(G) \ge (\frac{1}{3} + \varepsilon)n$$
 then $\chi(G) \le C(\varepsilon)$.

Question (Thomassen)

Is G homomorphic to a K_3 -free graph on $C(\varepsilon)$ vertices?

If G is K₃-free and
$$\delta(G) \ge (\frac{1}{3} + \varepsilon)n$$
 then $\chi(G) \le C(\varepsilon)$.

Question (Thomassen)

Is G homomorphic to a K_3 -free graph on $C(\varepsilon)$ vertices?

Łuczak '06: Yes!

If G is K₃-free and
$$\delta(G) \ge (\frac{1}{3} + \varepsilon)n$$
 then $\chi(G) \le C(\varepsilon)$.

Question (Thomassen)

Is G homomorphic to a K_3 -free graph on $C(\varepsilon)$ vertices?

Łuczak '06: Yes!

<u>Definition</u>: The <u>homomorphism threshold</u> $\delta_{\text{hom}}(H)$ is the infimum $\gamma > 0$ such that if G is H-free and $\delta(G) \ge \gamma n$ then G is homomorphic to an H-free graph on $C(\gamma)$ vertices.

If G is K₃-free and
$$\delta(G) \ge (\frac{1}{3} + \varepsilon)n$$
 then $\chi(G) \le C(\varepsilon)$.

Question (Thomassen)

Is G homomorphic to a K_3 -free graph on $C(\varepsilon)$ vertices?

Łuczak '06: Yes!

<u>Definition</u>: The homomorphism threshold $\delta_{hom}(H)$ is the infimum $\gamma > 0$ such that if G is H-free and $\delta(G) \ge \gamma n$ then G is homomorphic to an H-free graph on $C(\gamma)$ vertices.

$$\implies \delta_{\mathsf{hom}}(\mathsf{K}_3) = \frac{1}{3}.$$

 $\delta_{hom}(K_r) = \frac{2r-5}{2r-3}.$

 $\delta_{hom}(K_r) = \frac{2r-5}{2r-3}.$

Theorem (Ebsen-Schacht '20, Letzter-Snyder '19 for k = 2) $\delta_{hom}(\{C_3, C_5..., C_{2k+1}\}) = \frac{1}{2k+1} \text{ and } \delta_{hom}(C_{2k+1}) \leq \frac{1}{2k+1}.$

 $\delta_{hom}(K_r) = \frac{2r-5}{2r-3}.$

Theorem (Ebsen-Schacht '20, Letzter-Snyder '19 for k = 2) $\delta_{hom}(\{C_3, C_5 \dots, C_{2k+1}\}) = \frac{1}{2k+1} \text{ and } \delta_{hom}(C_{2k+1}) \leq \frac{1}{2k+1}.$

Not much is known. Even $\delta_{\text{hom}}(C_5)$ is not known.

 $\delta_{hom}(K_r) = \frac{2r-5}{2r-3}.$

Theorem (Ebsen-Schacht '20, Letzter-Snyder '19 for k = 2) $\delta_{hom}(\{C_3, C_5..., C_{2k+1}\}) = \frac{1}{2k+1} \text{ and } \delta_{hom}(C_{2k+1}) \le \frac{1}{2k+1}.$

Not much is known. Even $\delta_{\text{hom}}(C_5)$ is not known. <u>Theorem (Sankar '22+)</u>: $\delta_{\text{hom}}(C_5) > 0$.

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{\nu(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{\nu(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

How does $\delta_H(\varepsilon)$ depend on ε ?

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{\nu(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

How does $\delta_H(\varepsilon)$ depend on ε ?

• Best known proof gives $1/\delta \leq \text{tower}(\log 1/\varepsilon)$.

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{\nu(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

How does $\delta_H(\varepsilon)$ depend on ε ?

• Best known proof gives $1/\delta \leq \text{tower}(\log 1/\varepsilon)$.

•
$$\delta_H(\varepsilon) = \text{poly}(\varepsilon)$$
 iff *H* is bipartite.

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{\nu(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

How does $\delta_H(arepsilon)$ depend on arepsilon?

Best known proof gives
$$1/\delta \leq \text{tower}(\log 1/\varepsilon)$$
.

•
$$\delta_H(\varepsilon) = \text{poly}(\varepsilon)$$
 iff *H* is bipartite.

Question: Can we do better if G has high minimum degree?

Definition (Fox-Wigderson '21)

Definition (Fox-Wigderson '21)

The polynomial removal lemma threshold δ_{poly-rem}(H) is the infimum γ such that if δ(G) ≥ γn then δ_H(ε) = poly(ε).

Definition (Fox-Wigderson '21)

- The polynomial removal lemma threshold δ_{poly-rem}(H) is the infimum γ such that if δ(G) ≥ γn then δ_H(ε) = poly(ε).
- The <u>linear removal lemma threshold</u> δ_{lin-rem}(H) is the infimum γ such that if δ(G) ≥ γn then δ_H(ε) = Ω(ε).

Definition (Fox-Wigderson '21)

The polynomial removal lemma threshold δ_{poly-rem}(H) is the infimum γ such that if δ(G) ≥ γn then δ_H(ε) = poly(ε).

The <u>linear removal lemma threshold</u> δ_{lin-rem}(H) is the infimum γ such that if δ(G) ≥ γn then δ_H(ε) = Ω(ε).

<u>Note</u>: $\delta_{\text{poly-rem}}(H) \leq \delta_{\text{lin-rem}}(H)$.

Theorem (Fox-Wigderson '21)

- If $\delta(G) \ge (\frac{2r-5}{2r-2} + \alpha)n$ and G has εn^2 edge-disjoint copies of K_r , then G has $\Omega(\alpha \varepsilon n^r)$ copies of K_r .
- There are graphs G with δ(G) = (^{2r-5}/_{2r-2} − α)n and εn² edge-disjoint copies of K_r, but only ε^{Ω(log 1/ε)}n^r copies of K_r.

Definition (Fox-Wigderson '21)

The polynomial removal lemma threshold δ_{poly-rem}(H) is the infimum γ such that if δ(G) ≥ γn then δ_H(ε) = poly(ε).

The <u>linear removal lemma threshold</u> δ_{lin-rem}(H) is the infimum γ such that if δ(G) ≥ γn then δ_H(ε) = Ω(ε).

<u>Note</u>: $\delta_{\text{poly-rem}}(H) \leq \delta_{\text{lin-rem}}(H)$.

Theorem (Fox-Wigderson '21)

- If $\delta(G) \ge (\frac{2r-5}{2r-2} + \alpha)n$ and G has εn^2 edge-disjoint copies of K_r , then G has $\Omega(\alpha \varepsilon n^r)$ copies of K_r .
- There are graphs G with δ(G) = (^{2r-5}/_{2r-2} − α)n and εn² edge-disjoint copies of K_r, but only ε^{Ω(log 1/ε)}n^r copies of K_r.

$$\Longrightarrow \delta_{\text{lin-rem}}(K_r) = \delta_{\text{poly-rem}}(K_r) = \frac{2r-5}{2r-2}.$$

Zhihan Jin (ETH Zürich) Minimum Degree Removal Lemma Threshold

• What are $\delta_{\text{poly-rem}}(C_{2k+1})$ and $\delta_{\text{lin-rem}}(C_{2k+1})$?

- What are $\delta_{\text{poly-rem}}(C_{2k+1})$ and $\delta_{\text{lin-rem}}(C_{2k+1})$?
- Do δ_{poly-rem}(H), δ_{lin-rem}(H) receive finitely or infinitely many values on r-chromatic graphs H?

- What are $\delta_{\text{poly-rem}}(C_{2k+1})$ and $\delta_{\text{lin-rem}}(C_{2k+1})$?
- Do $\delta_{\text{poly-rem}}(H)$, $\delta_{\text{lin-rem}}(H)$ receive finitely or infinitely many values on *r*-chromatic graphs *H*?
- ► Is there a relation between the removal thresholds $\delta_{\text{poly-rem}}(H)$, $\delta_{\text{lin-rem}}(H)$ and $\delta_{\chi}(H)$, $\delta_{\text{hom}}(H)$?

Theorem (Gishboliner, **J.**, Sudakov)

 $\delta_{\text{poly-rem}}(H) \leq \delta_{\text{hom}}(\mathcal{I}_H).$

Theorem (Gishboliner, J., Sudakov)

 $\delta_{\text{poly-rem}}(H) \leq \delta_{\text{hom}}(\mathcal{I}_H).$

Note that $\mathcal{I}_{C_{2k+1}} = \{C_3, C_5, \dots, C_{2k+1}\}.$

Theorem (Gishboliner, J., Sudakov)

 $\delta_{\text{poly-rem}}(H) \leq \delta_{\text{hom}}(\mathcal{I}_H).$

Note that
$$\mathcal{I}_{C_{2k+1}} = \{C_3, C_5, \dots, C_{2k+1}\}.$$

Theorem (Gishboliner, J., Sudakov)

 $\delta_{\text{poly-rem}}(C_{2k+1}) = \frac{1}{2k+1}.$

<u>Definition</u>: \mathcal{I}_H is the set of minimal graphs H' such that $H \to H'$.

Theorem (Gishboliner, J., Sudakov)

 $\delta_{\text{poly-rem}}(H) \leq \delta_{\text{hom}}(\mathcal{I}_H).$

Note that
$$\mathcal{I}_{C_{2k+1}} = \{C_3, C_5, \dots, C_{2k+1}\}.$$

Theorem (Gishboliner, J., Sudakov)

$$\delta_{\text{poly-rem}}(C_{2k+1}) = \frac{1}{2k+1}.$$

Corollary

 $\delta_{poly-rem}(H)$ receives infinitely many values on 3-chromatic H.

<u>Definition</u>: edge xy of H is critical if $\chi(H - xy) < \chi(H)$.

<u>Definition</u>: edge xy of H is critical if $\chi(H - xy) < \chi(H)$.

Theorem (Gishboliner, J., Sudakov)

If H is 3-chromatic, $\delta_{lin-rem}(H) = \begin{cases} \frac{1}{2} & H \text{ has no critical edge,} \\ \frac{1}{3} & H \text{ has a critical edge and contains a triangle,} \\ \frac{1}{4} & H \text{ has a critical edge but no triangle.} \end{cases}$ <u>Definition</u>: edge xy of H is critical if $\chi(H - xy) < \chi(H)$.

Theorem (Gishboliner, J., Sudakov)

If H is 3-chromatic, $\delta_{lin-rem}(H) = \begin{cases} \frac{1}{2} & H \text{ has no critical edge,} \\ \frac{1}{3} & H \text{ has a critical edge and contains a triangle,} \\ \frac{1}{4} & H \text{ has a critical edge but no triangle.} \end{cases}$

Corollary

 $\delta_{lin-rem}(H)$ receives 3 different values on 3-chromatic H.

Interesting case: H has a critical edge but no triangle.

- Interesting case: H has a critical edge but no triangle.
- How does H look like?

- Interesting case: H has a critical edge but no triangle.
- ► How does *H* look like?

- Interesting case: H has a critical edge but no triangle.
- How does H look like?

- Interesting case: H has a critical edge but no triangle.
- How does H look like?

• $H \to C_{2k+1}$ for some $k \ge 2$ with $A_1 = \{x\}, A_2 = \{y\}$.

- Interesting case: H has a critical edge but no triangle.
- ► How does *H* look like?

• $H \to C_{2k+1}$ for some $k \ge 2$ with $A_1 = \{x\}, A_2 = \{y\}.$

• Consider $H = C_5$.

<u>Condition</u>: $H = C_5$, $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 -copies. If G contains $\varepsilon^{0.1}n^2$ edge-disjoint C_3 or C_5 ,

<u>Condition</u>: $H = C_5$, $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 -copies. If G contains $\varepsilon^{0.1}n^2$ edge-disjoint C_3 or C_5 ,

• G contains at least εn^5 copies of C_5 .

• Let E_c be the set of edges in these C_3 and C_5 .

• Let E_c be the set of edges in these C_3 and C_5 .

$$|E_c| \le 5\varepsilon^c n^2 < \frac{\alpha^2}{100} n^2$$

• Let E_c be the set of edges in these C_3 and C_5 .

$$|E_c| \le 5\varepsilon^c n^2 < \frac{\alpha^2}{100} n^2$$

• Let $G' := G \setminus E_c$.

▶ Let E_c be the set of edges in these C_3 and C_5 .

$$|E_c| \le 5\varepsilon^c n^2 < \frac{\alpha^2}{100} n^2$$

- Let $G' := G \setminus E_c$.
 - G' is $\{C_3, C_5\}$ -free.

• Let E_c be the set of edges in these C_3 and C_5 .

$$|E_c| \le 5\varepsilon^c n^2 < \frac{\alpha^2}{100} n^2$$

- Let $G' := G \setminus E_c$.
 - G' is $\{C_3, C_5\}$ -free.

• "Ideally", $\delta(G') \ge \delta(G) - \frac{\alpha^2}{100}n^2/n > (\frac{1}{4} + \frac{\alpha}{2})n$.

• Let E_c be the set of edges in these C_3 and C_5 .

$$|E_c| \le 5\varepsilon^c n^2 < \frac{\alpha^2}{100} n^2$$

- Let $G' := G \setminus E_c$.
 - G' is $\{C_3, C_5\}$ -free.
 - "Ideally", $\delta(G') \ge \delta(G) \frac{\alpha^2}{100}n^2/n > (\frac{1}{4} + \frac{\alpha}{2})n$.
 - "Ideally", G' is bipartite (large degree implies small girth).

<u>Condition</u>: $H = C_5$, $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 -copies in G, G' is bipartite with bipartition $L \sqcup R$.

▶ Each C_5 in G contains edge $ab \in L$ or $ab \in R$.

- Each C_5 in G contains edge $ab \in L$ or $ab \in R$.
- Fix any edge $ab \in L$ (or $ab \in R$).

- Each C_5 in G contains edge $ab \in L$ or $ab \in R$.
- Fix any edge $ab \in L$ (or $ab \in R$).
 - \triangleright > εn^2 such edges.

- Each C_5 in G contains edge $ab \in L$ or $ab \in R$.
- Fix any edge $ab \in L$ (or $ab \in R$).
 - \triangleright > εn^2 such edges.
- <u>Case (a)</u>: $\deg_G(a, b) > \frac{\alpha n}{2}$.

- Each C_5 in G contains edge $ab \in L$ or $ab \in R$.
- Fix any edge $ab \in L$ (or $ab \in R$).
 - \triangleright > εn^2 such edges.
- <u>Case (a)</u>: $\deg_G(a, b) > \frac{\alpha n}{2}$.

<u>Condition</u>: $H = C_5$, $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 -copies in G, G' is bipartite with bipartition $L \sqcup R$.

- Each C_5 in G contains edge $ab \in L$ or $ab \in R$.
- Fix any edge $ab \in L$ (or $ab \in R$).
 - \triangleright > εn^2 such edges.
- <u>Case (a)</u>: $\deg_G(a, b) > \frac{\alpha n}{2}$.

Ω_α(n³) paths (x₁, x₂, x₃) with x₁, x₃ red because δ(G) > ¹/₄n.
 Ω_α(n³) C₅'s of form (a, x₁, x₂, x₃, b).

Zhihan Jin (ETH Zürich)

Pick
$$ab \in L$$
 (or $ab \in R$).

• Case (b):
$$\deg_G(a, b) \leq \frac{\alpha n}{2}$$
.

Pick *ab* ∈ *L* (or *ab* ∈ *R*).
Case (b): deg_G(a, b) ≤
$$\frac{\alpha n}{2}$$
.
|*R*| ≥ 2δ(*G*) − deg_G(a, b) > $\frac{n}{2}$ and |*L*| < $\frac{n}{2}$.

Pick
$$ab \in L$$
 (or $ab \in R$).
Case (b): deg_G(a, b) ≤ $\frac{\alpha n}{2}$.
|R| ≥ 2δ(G) - deg_G(a, b) > $\frac{n}{2}$ and |L| < $\frac{n}{2}$.
L

<u>Condition</u>: $H = C_5$, $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 -copies in G, G' is bipartite with bipartition $L \sqcup R$.

Pick
$$ab \in L$$
 (or $ab \in R$).
Case (b): $\deg_G(a, b) \leq \frac{\alpha n}{2}$.
|R| ≥ 2δ(G) - $\deg_G(a, b) > \frac{n}{2}$ and |L| < $\frac{n}{2}$.
L
R
A second sec

• deg_{G'}(a') + deg_{G'}(b') > $(\frac{1}{2} + \alpha)n > |L| + \alpha n$.

<u>Condition</u>: $H = C_5$, $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 -copies in G, G' is bipartite with bipartition $L \sqcup R$.

Pick
$$ab \in L$$
 (or $ab \in R$).
Case (b): $\deg_G(a, b) \leq \frac{\alpha n}{2}$.
 $|R| \geq 2\delta(G) - \deg_G(a, b) > \frac{n}{2}$ and $|L| < \frac{n}{2}$.
L
R
 $a = \frac{1}{2} \int_{a}^{a} \int_{a}^{a}$

 \triangleright $\Omega_{\alpha}(n^5)$ C_5 in total.

• Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100}n^2$.

• Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100}n^2$.

• Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .

- Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100}n^2$.
- Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .

$$|S| \leq |E_c| / \frac{\alpha n}{10} = \frac{\alpha}{10} n.$$

- Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100}n^2$.
- Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .

$$|S| \le |E_c| / \frac{\alpha n}{10} = \frac{\alpha}{10} n$$

• Let $G' := G \setminus E_c \setminus S$.

- Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100}n^2$.
- Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .

$$|S| \leq |E_c|/\frac{\alpha n}{10} = \frac{\alpha}{10}n.$$

- Let $G' := G \setminus E_c \setminus S$.
 - $v(G') \approx v(G)$ and $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})v(G')$.

- Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100}n^2$.
- Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .

$$|S| \leq |E_c|/\frac{\alpha n}{10} = \frac{\alpha}{10}n.$$

- Let $G' := G \setminus E_c \setminus S$.
 - $v(G') \approx v(G)$ and $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})v(G')$.

• oddgirth(
$$G'$$
) \geq 7.

<u>Condition</u>: $H = C_5$, $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 -copies and $< \varepsilon^c$ edge-disjoint copies of C_3 and C_5 .

- Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100}n^2$.
- Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .

$$|S| \leq |E_c| / \frac{\alpha n}{10} = \frac{\alpha}{10} n.$$

- Let $G' := G \setminus E_c \setminus S$.
 - $v(G') \approx v(G)$ and $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})v(G')$.
 - oddgirth(G') \geq 7.
- By [Letzer-Snyder], G' is bipartite or homomorphic to C_7 .

<u>Condition</u>: $H = C_5$, $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 -copies and $< \varepsilon^c$ edge-disjoint copies of C_3 and C_5 .

- Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100}n^2$.
- Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .

$$|S| \leq |E_c|/\frac{\alpha n}{10} = \frac{\alpha}{10}n.$$

- Let $G' := G \setminus E_c \setminus S$.
 - $v(G') \approx v(G)$ and $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})v(G')$.
 - oddgirth(G') \geq 7.
- By [Letzer-Snyder], G' is bipartite or homomorphic to C_7 .
- Consider when G' is bipartite.

Add back E_c (edge) and S (vertex) into G'.

- Add back E_c (edge) and S (vertex) into G'.
- Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R.

- Add back E_c (edge) and S (vertex) into G'.
- Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R.

• Otherwise, put *u* into *L* if $\deg_G(L) < \frac{\alpha}{5}n$. (Same for *R*)

- Add back E_c (edge) and S (vertex) into G'.
- Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R.

• Otherwise, put *u* into *L* if $\deg_G(L) < \frac{\alpha}{5}n$. (Same for *R*)

• Edge xy is of type I if $x, y \in L$ (or R) and is of type II if $x \in S$.

- Add back E_c (edge) and S (vertex) into G'.
- Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R.
 - Otherwise, put *u* into *L* if $\deg_G(L) < \frac{\alpha}{5}n$. (Same for *R*)
- Edge xy is of type I if $x, y \in L$ (or R) and is of type II if $x \in S$.
- ▶ Any (edge-disjoint) C₅-copy contains edge of type I or II.

- Add back E_c (edge) and S (vertex) into G'.
- Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R.
 - Otherwise, put *u* into *L* if $\deg_G(L) < \frac{\alpha}{5}n$. (Same for *R*)
- Edge xy is of type I if $x, y \in L$ (or R) and is of type II if $x \in S$.
- ▶ Any (edge-disjoint) C₅-copy contains edge of type I or II.
 - At least $\frac{\varepsilon n^2}{2}$ edges are of type I. Apply the ideal proof.
 - Or at least $\frac{\varepsilon n^2}{2}$ edges are of type II.

- Add back E_c (edge) and S (vertex) into G'.
- Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R.
 - Otherwise, put *u* into *L* if $\deg_G(L) < \frac{\alpha}{5}n$. (Same for *R*)
- Edge xy is of type I if $x, y \in L$ (or R) and is of type II if $x \in S$.
- ▶ Any (edge-disjoint) C₅-copy contains edge of type I or II.
 - At least $\frac{\varepsilon n^2}{2}$ edges are of type I. Apply the ideal proof.
 - Or at least $\frac{\varepsilon n^2}{2}$ edges are of type II.

<u>Case 1:</u> at least $\frac{\varepsilon n^2}{2}$ edges are of type I.

- ▶ Pick *ab* of type I. Say $a, b \in L$.
- Case 1(a): deg_G(a, b) > $\frac{\alpha n}{2}$.

<u>Case 1:</u> at least $\frac{\varepsilon n^2}{2}$ edges are of type I.

▶ Pick *ab* of type I. Say $a, b \in L$.

• Case 1(a): deg_G(a, b) > $\frac{\alpha n}{2}$.

<u>Case 1:</u> at least $\frac{\varepsilon n^2}{2}$ edges are of type I.

- ▶ Pick *ab* of type I. Say $a, b \in L$.
- Case 1(a): deg_G(a, b) > $\frac{\alpha n}{2}$.

Ω_α(n³) paths (x₁, x₂, x₃) with x₁, x₃ red.
 Ω_α(n³) C₅'s of form (a, x₁, x₂, x₃, b).

<u>Case 1:</u> at least $\frac{\varepsilon n^2}{2}$ edges are of type I.

- ▶ Pick *ab* of type I. Say $a, b \in L$.
- Case 1(b): $\deg_G(a, b) \leq \frac{\alpha n}{2}$.

<u>Case 1:</u> at least $\frac{\varepsilon n^2}{2}$ edges are of type I. ► Pick *ab* of type I. Say *a*, *b* ∈ *L*. ► <u>Case 1(b)</u>: deg_{*G*}(*a*, *b*) ≤ $\frac{\alpha n}{2}$. ► $|R| > \frac{n}{2}$ and $|L| < \frac{n}{2}$.

 $\blacktriangleright \deg_{G'}(a') + \deg_{G'}(b') > (\frac{1}{2} + \alpha)n > |L| + \alpha n.$

• $\Omega_{\alpha}(n^3)$ C_5 's of form (a, a', x, b', b).

• $\Omega_{\alpha}(n^3)$ C_5 's of form (a, a', x, b', b).

•
$$\Omega_{\alpha}(n^5)$$
 C_5 in case 1

<u>Case 2</u>: at least $\frac{\varepsilon n^2}{2}$ edges are of type II.

• At most |S|n edges are of type II.

<u>Case 2:</u> at least $\frac{\varepsilon n^2}{2}$ edges are of type II. ► At most |S|n edges are of type II. ► $|S| \ge \frac{\varepsilon n}{2}$.

<u>Case 2</u>: at least ^{εn²}/₂ edges are of type II.
At most |S|n edges are of type II.
|S| ≥ ^{εn}/₂.
Pick a ∈ S. Say |L| ≤ ⁿ/₂.

Are δ_{poly-rem}(H) and δ_{lin-rem}(H) monotone?
 Is there a 3-chromatic H with ¹/₅ < δ_{poly-rem}(H) < ¹/₃?

- Are $\delta_{poly-rem}(H)$ and $\delta_{lin-rem}(H)$ monotone?
- ▶ Is there a 3-chromatic H with $\frac{1}{5} < \delta_{poly-rem}(H) < \frac{1}{3}$?
- Is it true that δ_{poly-rem}(H) > ¹/₅ when H is 3-chromatic and H is not homomorphic to C₅?

- Are $\delta_{\text{poly-rem}}(H)$ and $\delta_{\text{lin-rem}}(H)$ monotone?
- ▶ Is there a 3-chromatic H with $\frac{1}{5} < \delta_{poly-rem}(H) < \frac{1}{3}$?
- Is it true that δ_{poly-rem}(H) > ¹/₅ when H is 3-chromatic and H is not homomorphic to C₅?

• Is
$$\delta_{\text{poly-rem}}(H) = \delta_{\text{hom}}(\mathcal{I}_H)$$
?

The End

Questions? Comments?