Minimum Degree Removal Lemma Thresholds

Zhihan Jin

ETH Zürich

Joint work with Lior Gishboliner and Benny Sudakov

The chromatic threshold

Conjecture (Erdős-Simonovits '73)

If G is K_{3}-free and $\delta(G)>\frac{n}{3}$ then $\chi(G)$ is bounded.

The chromatic threshold

Conjecture (Erdős-Simonovits '73)

If G is K_{3}-free and $\delta(G)>\frac{n}{3}$ then $\chi(G)$ is bounded.

Construction (Hajnal)

There are K_{3}-free graphs G with $\delta(G)=\left(\frac{1}{3}-o(1)\right) n$ and $\chi(G) \rightarrow \infty$.

The chromatic threshold

Conjecture (Erdős-Simonovits '73)

If G is K_{3}-free and $\delta(G)>\frac{n}{3}$ then $\chi(G)$ is bounded.

Construction (Hajnal)

There are K_{3}-free graphs G with $\delta(G)=\left(\frac{1}{3}-o(1)\right) n$ and $\chi(G) \rightarrow \infty$.

> Theorem (Thomassen '02)
> If G is K_{3}-free and $\delta(G) \geq\left(\frac{1}{3}+\varepsilon\right) n$ then $\chi(G) \leq C(\varepsilon)$.

The chromatic threshold

Conjecture (Erdős-Simonovits '73)

 If G is K_{3}-free and $\delta(G)>\frac{n}{3}$ then $\chi(G)$ is bounded.
Construction (Hajnal)

There are K_{3}-free graphs G with $\delta(G)=\left(\frac{1}{3}-o(1)\right) n$ and $\chi(G) \rightarrow \infty$.

```
Theorem (Thomassen '02)
If G is K}\mp@subsup{K}{3}{}\mathrm{ -free and }\delta(G)\geq(\frac{1}{3}+\varepsilon)n\mathrm{ then }\chi(G)\leqC(\varepsilon)
```


Theorem (Brandt-Thomasse '11)

If G is K_{3}-free and $\delta(G)>\frac{n}{3}$ then $\chi(G) \leq 4$.

- This is tight by Hajnal's construction.

The chromatic threshold

Definition: The chromatic threshold $\delta_{\chi}(H)$ is the infimum $\gamma>0$ such that if G is H-free and $\delta(G) \geq \gamma n$ then $\chi(G) \leq C(\gamma)$.

The chromatic threshold

Definition: The chromatic threshold $\delta_{\chi}(H)$ is the infimum $\gamma>0$ such that if G is H-free and $\delta(G) \geq \gamma n$ then $\chi(G) \leq C(\gamma)$.

Thomassen + Hajnal's construction $\Longrightarrow \delta_{\chi}\left(K_{3}\right)=\frac{1}{3}$.

The chromatic threshold

Definition: The chromatic threshold $\delta_{\chi}(H)$ is the infimum $\gamma>0$ such that if G is H-free and $\delta(G) \geq \gamma n$ then $\chi(G) \leq C(\gamma)$.

Thomassen + Hajnal's construction $\Longrightarrow \delta_{\chi}\left(K_{3}\right)=\frac{1}{3}$.

> Theorem (Goddard-Lyle, Nikiforov '11)
> $\delta_{\chi}\left(K_{r}\right)=\frac{2 r-5}{2 r-3}$.

The chromatic threshold

Definition: The chromatic threshold $\delta_{\chi}(H)$ is the infimum $\gamma>0$ such that if G is H-free and $\delta(G) \geq \gamma n$ then $\chi(G) \leq C(\gamma)$.

Thomassen + Hajnal's construction $\Longrightarrow \delta_{\chi}\left(K_{3}\right)=\frac{1}{3}$.

> Theorem (Goddard-Lyle, Nikiforov '11)
> $\delta_{\chi}\left(K_{r}\right)=\frac{2 r-5}{2 r-3}$.

The Allen-Böttcher-Griffiths-Kohayakawa-Morris Theorem '13
Determines $\delta_{\chi}(H)$ for every H. If $\chi(H)=r$ then

$$
\delta_{\chi}(H) \in\left\{\frac{r-3}{r-2}, \frac{2 r-5}{2 r-3}, \frac{r-2}{r-1}\right\}
$$

The homomorphism threshold

Theorem (Thomassen '02) If G is K_{3}-free and $\delta(G) \geq\left(\frac{1}{3}+\varepsilon\right) n$ then $\chi(G) \leq C(\varepsilon)$.

The homomorphism threshold

```
Theorem (Thomassen '02) If \(G\) is \(K_{3}\)-free and \(\delta(G) \geq\left(\frac{1}{3}+\varepsilon\right) n\) then \(\chi(G) \leq C(\varepsilon)\).
```


Question (Thomassen)

Is G homomorphic to a K_{3}-free graph on $C(\varepsilon)$ vertices?

The homomorphism threshold

Theorem (Thomassen '02) If G is K_{3}-free and $\delta(G) \geq\left(\frac{1}{3}+\varepsilon\right) n$ then $\chi(G) \leq C(\varepsilon)$.

Question (Thomassen)

Is G homomorphic to a K_{3}-free graph on $C(\varepsilon)$ vertices?

Łuczak '06: Yes!

The homomorphism threshold

```
Theorem (Thomassen '02)
If G is K}\mp@subsup{K}{3}{}\mathrm{ -free and }\delta(G)\geq(\frac{1}{3}+\varepsilon)n\mathrm{ then }\chi(G)\leqC(\varepsilon)
```


Question (Thomassen)

Is G homomorphic to a K_{3}-free graph on $C(\varepsilon)$ vertices?

Łuczak '06: Yes!

Definition: The homomorphism threshold $\delta_{\text {hom }}(H)$ is the infimum $\gamma>0$ such that if G is H-free and $\delta(G) \geq \gamma n$ then G is homomorphic to an H-free graph on $C(\gamma)$ vertices.

The homomorphism threshold

Theorem (Thomassen '02)

If G is K_{3}-free and $\delta(G) \geq\left(\frac{1}{3}+\varepsilon\right) n$ then $\chi(G) \leq C(\varepsilon)$.

Question (Thomassen)

Is G homomorphic to a K_{3}-free graph on $C(\varepsilon)$ vertices?

Łuczak '06: Yes!

Definition: The homomorphism threshold $\delta_{\text {hom }}(H)$ is the infimum $\gamma>0$ such that if G is H-free and $\delta(G) \geq \gamma n$ then G is homomorphic to an H-free graph on $C(\gamma)$ vertices.
$\Longrightarrow \delta_{\text {hom }}\left(K_{3}\right)=\frac{1}{3}$.

The homomorphism threshold

Theorem (Goddard-Lyle, Nikiforov '11)
 $\delta_{\text {hom }}\left(K_{r}\right)=\frac{2 r-5}{2 r-3}$.

The homomorphism threshold

Theorem (Goddard-Lyle, Nikiforov '11)
 $\delta_{\text {hom }}\left(K_{r}\right)=\frac{2 r-5}{2 r-3}$.

Theorem (Ebsen-Schacht '20, Letzter-Snyder '19 for $k=2$)
 $\delta_{\text {hom }}\left(\left\{C_{3}, C_{5} \ldots, C_{2 k+1}\right\}\right)=\frac{1}{2 k+1}$ and $\delta_{\text {hom }}\left(C_{2 k+1}\right) \leq \frac{1}{2 k+1}$.

The homomorphism threshold

Theorem (Goddard-Lyle, Nikiforov '11)
 $\delta_{\text {hom }}\left(K_{r}\right)=\frac{2 r-5}{2 r-3}$.

Theorem (Ebsen-Schacht '20, Letzter-Snyder '19 for $k=2$)
 $\delta_{\text {hom }}\left(\left\{C_{3}, C_{5} \ldots, C_{2 k+1}\right\}\right)=\frac{1}{2 k+1}$ and $\delta_{\text {hom }}\left(C_{2 k+1}\right) \leq \frac{1}{2 k+1}$.

Not much is known. Even $\delta_{\text {hom }}\left(C_{5}\right)$ is not known.

The homomorphism threshold

Theorem (Goddard-Lyle, Nikiforov '11)

$\delta_{\text {hom }}\left(K_{r}\right)=\frac{2 r-5}{2 r-3}$.

Theorem (Ebsen-Schacht '20, Letzter-Snyder '19 for $k=2$)
 $\delta_{\text {hom }}\left(\left\{C_{3}, C_{5} \ldots, C_{2 k+1}\right\}\right)=\frac{1}{2 k+1}$ and $\delta_{\text {hom }}\left(C_{2 k+1}\right) \leq \frac{1}{2 k+1}$.

Not much is known. Even $\delta_{\text {hom }}\left(C_{5}\right)$ is not known.
Theorem (Sankar '22+): $\delta_{\text {hom }}\left(C_{5}\right)>0$.

The graph removal lemma

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^{2} edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta=\delta_{H}(\varepsilon)>0$.

The graph removal lemma

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^{2} edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta=\delta_{H}(\varepsilon)>0$.

How does $\delta_{H}(\varepsilon)$ depend on ε ?

The graph removal lemma

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^{2} edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta=\delta_{H}(\varepsilon)>0$.

How does $\delta_{H}(\varepsilon)$ depend on ε ?

- Best known proof gives $1 / \delta \leq \operatorname{tower}(\log 1 / \varepsilon)$.

The graph removal lemma

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^{2} edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta=\delta_{H}(\varepsilon)>0$.

How does $\delta_{H}(\varepsilon)$ depend on ε ?

- Best known proof gives $1 / \delta \leq \operatorname{tower}(\log 1 / \varepsilon)$.
- $\delta_{H}(\varepsilon)=\operatorname{poly}(\varepsilon)$ iff H is bipartite.

The graph removal lemma

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^{2} edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta=\delta_{H}(\varepsilon)>0$.

How does $\delta_{H}(\varepsilon)$ depend on ε ?

- Best known proof gives $1 / \delta \leq$ tower $(\log 1 / \varepsilon)$.
- $\delta_{H}(\varepsilon)=\operatorname{poly}(\varepsilon)$ iff H is bipartite.

Question: Can we do better if G has high minimum degree?

The removal lemma thresholds

Definition (Fox-Wigderson '21)

The removal lemma thresholds

Definition (Fox-Wigderson '21)

- The polynomial removal lemma threshold $\delta_{\text {poly-rem }}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_{H}(\varepsilon)=\operatorname{poly}(\varepsilon)$.

The removal lemma thresholds

Definition (Fox-Wigderson '21)

- The polynomial removal lemma threshold $\delta_{\text {poly-rem }}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_{H}(\varepsilon)=\operatorname{poly}(\varepsilon)$.
- The linear removal lemma threshold $\delta_{\text {lin-rem }}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_{H}(\varepsilon)=\Omega(\varepsilon)$.

The removal lemma thresholds

Definition (Fox-Wigderson '21)

- The polynomial removal lemma threshold $\delta_{\text {poly-rem }}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_{H}(\varepsilon)=\operatorname{poly}(\varepsilon)$.
- The linear removal lemma threshold $\delta_{\text {lin-rem }}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_{H}(\varepsilon)=\Omega(\varepsilon)$.

Note: $\delta_{\text {poly-rem }}(H) \leq \delta_{\text {lin-rem }}(H)$.

Theorem (Fox-Wigderson '21)

- If $\delta(G) \geq\left(\frac{2 r-5}{2 r-2}+\alpha\right) n$ and G has εn^{2} edge-disjoint copies of K_{r}, then G has $\Omega\left(\alpha \varepsilon n^{r}\right)$ copies of K_{r}.
- There are graphs G with $\delta(G)=\left(\frac{2 r-5}{2 r-2}-\alpha\right) n$ and εn^{2} edge-disjoint copies of K_{r}, but only $\varepsilon^{\Omega(\log 1 / \varepsilon)} n^{r}$ copies of K_{r}.

The removal lemma thresholds

Definition (Fox-Wigderson '21)

- The polynomial removal lemma threshold $\delta_{\text {poly-rem }}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_{H}(\varepsilon)=\operatorname{poly}(\varepsilon)$.
- The linear removal lemma threshold $\delta_{\text {lin-rem }}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_{H}(\varepsilon)=\Omega(\varepsilon)$.

Note: $\delta_{\text {poly-rem }}(H) \leq \delta_{\text {lin-rem }}(H)$.

Theorem (Fox-Wigderson '21)

- If $\delta(G) \geq\left(\frac{2 r-5}{2 r-2}+\alpha\right) n$ and G has εn^{2} edge-disjoint copies of K_{r}, then G has $\Omega\left(\alpha \varepsilon n^{r}\right)$ copies of K_{r}.
- There are graphs G with $\delta(G)=\left(\frac{2 r-5}{2 r-2}-\alpha\right) n$ and εn^{2} edge-disjoint copies of K_{r}, but only $\varepsilon^{\Omega(\log 1 / \varepsilon)} n^{r}$ copies of K_{r}.
$\Longrightarrow \delta_{\text {lin-rem }}\left(K_{r}\right)=\delta_{\text {poly-rem }}\left(K_{r}\right)=\frac{2 r-5}{2 r-2}$.

The removal lemma thresholds

Questions (Fox-Wigderson)

The removal lemma thresholds

Questions (Fox-Wigderson)

- What are $\delta_{\text {poly-rem }}\left(C_{2 k+1}\right)$ and $\delta_{\text {lin-rem }}\left(C_{2 k+1}\right)$?

The removal lemma thresholds

Questions (Fox-Wigderson)

- What are $\delta_{\text {poly-rem }}\left(C_{2 k+1}\right)$ and $\delta_{\text {lin-rem }}\left(C_{2 k+1}\right)$?
- Do $\delta_{\text {poly-rem }}(H), \delta_{\text {lin-rem }}(H)$ receive finitely or infinitely many values on r-chromatic graphs H ?

The removal lemma thresholds

Questions (Fox-Wigderson)

- What are $\delta_{\text {poly-rem }}\left(C_{2 k+1}\right)$ and $\delta_{\text {lin-rem }}\left(C_{2 k+1}\right)$?
- Do $\delta_{\text {poly-rem }}(H), \delta_{\text {lin-rem }}(H)$ receive finitely or infinitely many values on r-chromatic graphs H ?
- Is there a relation between the removal thresholds $\delta_{\text {poly-rem }}(H)$, $\delta_{\text {lin-rem }}(H)$ and $\delta_{\chi}(H), \delta_{\text {hom }}(H)$?

Our results

Definition: \mathcal{I}_{H} is the set of minimal graphs H^{\prime} such that $H \rightarrow H^{\prime}$.

Our results

Definition: \mathcal{I}_{H} is the set of minimal graphs H^{\prime} such that $H \rightarrow H^{\prime}$.

Theorem (Gishboliner, J., Sudakov)
 $\delta_{\text {poly-rem }}(H) \leq \delta_{\text {hom }}\left(\mathcal{I}_{H}\right)$.

Our results

Definition: \mathcal{I}_{H} is the set of minimal graphs H^{\prime} such that $H \rightarrow H^{\prime}$.

Theorem (Gishboliner, J., Sudakov)
 $\delta_{\text {poly-rem }}(H) \leq \delta_{\text {hom }}\left(\mathcal{I}_{H}\right)$.

Note that $\mathcal{I}_{C_{2 k+1}}=\left\{C_{3}, C_{5}, \ldots, C_{2 k+1}\right\}$.

Our results

Definition: \mathcal{I}_{H} is the set of minimal graphs H^{\prime} such that $H \rightarrow H^{\prime}$.

Theorem (Gishboliner, J., Sudakov)
 $\delta_{\text {poly-rem }}(H) \leq \delta_{\text {hom }}\left(\mathcal{I}_{H}\right)$.

Note that $\mathcal{I}_{C_{2 k+1}}=\left\{C_{3}, C_{5}, \ldots, C_{2 k+1}\right\}$.
Theorem (Gishboliner, J., Sudakov)
$\delta_{\text {poly-rem }}\left(C_{2 k+1}\right)=\frac{1}{2 k+1}$.

Our results

Definition: \mathcal{I}_{H} is the set of minimal graphs H^{\prime} such that $H \rightarrow H^{\prime}$.

Theorem (Gishboliner, J., Sudakov)

$\delta_{\text {poly-rem }}(H) \leq \delta_{\text {hom }}\left(\mathcal{I}_{H}\right)$.
Note that $\mathcal{I}_{C_{2 k+1}}=\left\{C_{3}, C_{5}, \ldots, C_{2 k+1}\right\}$.
Theorem (Gishboliner, J., Sudakov)
$\delta_{\text {poly-rem }}\left(C_{2 k+1}\right)=\frac{1}{2 k+1}$.

Corollary

$\delta_{\text {poly-rem }}(H)$ receives infinitely many values on 3-chromatic H.

Our results

Definition: edge $x y$ of H is critical if $\chi(H-x y)<\chi(H)$.

Our results

Definition: edge $x y$ of H is critical if $\chi(H-x y)<\chi(H)$.

Theorem (Gishboliner, J., Sudakov)

If H is 3-chromatic,
$\delta_{\text {lin-rem }}(H)= \begin{cases}\frac{1}{2} & H \text { has no critical edge, } \\ \frac{1}{3} & H \text { has a critical edge and contains a triangle }, \\ \frac{1}{4} & H \text { has a critical edge but no triangle. }\end{cases}$

Our results

Definition: edge $x y$ of H is critical if $\chi(H-x y)<\chi(H)$.

Theorem (Gishboliner, J., Sudakov)

If H is 3-chromatic,
$\left\{\frac{1}{2} \quad H\right.$ has no critical edge,
$\delta_{\text {lin-rem }}(H)=\left\{\begin{array}{l}\frac{1}{3} \quad H \text { has a critical edge and contains a triangle, }, ~\end{array}\right.$
H has a critical edge but no triangle.

Corollary

$\delta_{\text {lin-rem }}(H)$ receives 3 different values on 3-chromatic H.

Linear removal lemma threshold when $\chi(H)=3$

- Interesting case: H has a critical edge but no triangle.

Linear removal lemma threshold when $\chi(H)=3$

- Interesting case: H has a critical edge but no triangle.
- How does H look like?

Linear removal lemma threshold when $\chi(H)=3$

- Interesting case: H has a critical edge but no triangle.
- How does H look like?

Linear removal lemma threshold when $\chi(H)=3$

- Interesting case: H has a critical edge but no triangle.
- How does H look like?

Linear removal lemma threshold when $\chi(H)=3$

- Interesting case: H has a critical edge but no triangle.
- How does H look like?

- $H \rightarrow C_{2 k+1}$ for some $k \geq 2$ with $A_{1}=\{x\}, A_{2}=\{y\}$.

Linear removal lemma threshold when $\chi(H)=3$

- Interesting case: H has a critical edge but no triangle.
- How does H look like?

- $H \rightarrow C_{2 k+1}$ for some $k \geq 2$ with $A_{1}=\{x\}, A_{2}=\{y\}$.
- Consider $H=C_{5}$.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies.

- If G contains $\varepsilon^{0.1} n^{2}$ edge-disjoint C_{3} or C_{5},

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies.

- If G contains $\varepsilon^{0.1} n^{2}$ edge-disjoint C_{3} or C_{5},
- G contains at least εn^{5} copies of C_{5}.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies, $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and C_{5}.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies, $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and C_{5}.
- $\left|E_{c}\right| \leq 5 \varepsilon^{c} n^{2}<\frac{\alpha^{2}}{100} n^{2}$.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies, $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and C_{5}.
- $\left|E_{c}\right| \leq 5 \varepsilon^{c} n^{2}<\frac{\alpha^{2}}{100} n^{2}$.
- Let $G^{\prime}:=G \backslash E_{c}$.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies, $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and C_{5}.
- $\left|E_{c}\right| \leq 5 \varepsilon^{c} n^{2}<\frac{\alpha^{2}}{100} n^{2}$.
- Let $G^{\prime}:=G \backslash E_{c}$.
- G^{\prime} is $\left\{C_{3}, C_{5}\right\}$-free.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies, $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and C_{5}.
- $\left|E_{c}\right| \leq 5 \varepsilon^{c} n^{2}<\frac{\alpha^{2}}{100} n^{2}$.
- Let $G^{\prime}:=G \backslash E_{c}$.
- G^{\prime} is $\left\{C_{3}, C_{5}\right\}$-free.
- "Ideally", $\delta\left(G^{\prime}\right) \geq \delta(G)-\frac{\alpha^{2}}{100} n^{2} / n>\left(\frac{1}{4}+\frac{\alpha}{2}\right) n$.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies, $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and C_{5}.
- $\left|E_{c}\right| \leq 5 \varepsilon^{c} n^{2}<\frac{\alpha^{2}}{100} n^{2}$.
- Let $G^{\prime}:=G \backslash E_{c}$.
- G^{\prime} is $\left\{C_{3}, C_{5}\right\}$-free.
- "Ideally", $\delta\left(G^{\prime}\right) \geq \delta(G)-\frac{\alpha^{2}}{100} n^{2} / n>\left(\frac{1}{4}+\frac{\alpha}{2}\right) n$.
- "Ideally", G^{\prime} is bipartite (large degree implies small girth).

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies in G, G^{\prime} is bipartite with bipartition $L \sqcup R$.

- Each C_{5} in G contains edge $a b \in L$ or $a b \in R$.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies in G, G^{\prime} is bipartite with bipartition $L \sqcup R$.

- Each C_{5} in G contains edge $a b \in L$ or $a b \in R$.
- Fix any edge $a b \in L$ (or $a b \in R$).

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies in G, G^{\prime} is bipartite with bipartition $L \sqcup R$.

- Each C_{5} in G contains edge $a b \in L$ or $a b \in R$.
- Fix any edge $a b \in L$ (or $a b \in R$).
- $>\varepsilon n^{2}$ such edges.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies in G, G^{\prime} is bipartite with bipartition $L \sqcup R$.

- Each C_{5} in G contains edge $a b \in L$ or $a b \in R$.
- Fix any edge $a b \in L$ (or $a b \in R$).
- $>\varepsilon n^{2}$ such edges.
- Case (a): $\operatorname{deg}_{G}(a, b)>\frac{\alpha n}{2}$.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies in G, G^{\prime} is bipartite with bipartition $L \sqcup R$.

- Each C_{5} in G contains edge $a b \in L$ or $a b \in R$.
- Fix any edge $a b \in L$ (or $a b \in R$).
- $>\varepsilon n^{2}$ such edges.
- Case (a): $\operatorname{deg}_{G}(a, b)>\frac{\alpha n}{2}$.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies in G, G^{\prime} is bipartite with bipartition $L \sqcup R$.

- Each C_{5} in G contains edge $a b \in L$ or $a b \in R$.
- Fix any edge $a b \in L$ (or $a b \in R$).
- $>\varepsilon n^{2}$ such edges.
- Case (a): $\operatorname{deg}_{G}(a, b)>\frac{\alpha n}{2}$.

- $\Omega_{\alpha}\left(n^{3}\right)$ paths (x_{1}, x_{2}, x_{3}) with x_{1}, x_{3} red because $\delta(G)>\frac{1}{4} n$.
- $\Omega_{\alpha}\left(n^{3}\right) C_{5}$'s of form ($\left.a, x_{1}, x_{2}, x_{3}, b\right)$.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies in G, G^{\prime} is bipartite with bipartition $L \sqcup R$.

- Pick $a b \in L($ or $a b \in R)$.
- Case (b): $\operatorname{deg}_{G}(a, b) \leq \frac{\alpha n}{2}$.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies in G, G^{\prime} is bipartite with bipartition $L \sqcup R$.

- Pick $a b \in L($ or $a b \in R)$.
- Case (b): $\operatorname{deg}_{G}(a, b) \leq \frac{\alpha n}{2}$.
- $|R| \geq 2 \delta(G)-\operatorname{deg}_{G}(a, b)>\frac{n}{2}$ and $|L|<\frac{n}{2}$.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies in G, G^{\prime} is bipartite with bipartition $L \sqcup R$.

- Pick $a b \in L$ (or $a b \in R$).
- Case (b): $\operatorname{deg}_{G}(a, b) \leq \frac{\alpha n}{2}$.
- $|R| \geq 2 \delta(G)-\operatorname{deg}_{G}(a, b)>\frac{n}{2}$ and $|L|<\frac{n}{2}$.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies in G, G^{\prime} is bipartite with bipartition $L \sqcup R$.

- Pick $a b \in L$ (or $a b \in R$).
- Case (b): $\operatorname{deg}_{G}(a, b) \leq \frac{\alpha n}{2}$.
- $|R| \geq 2 \delta(G)-\operatorname{deg}_{G}(a, b)>\frac{n}{2}$ and $|L|<\frac{n}{2}$.

- $\operatorname{deg}_{G^{\prime}}\left(a^{\prime}\right)+\operatorname{deg}_{G^{\prime}}\left(b^{\prime}\right)>\left(\frac{1}{2}+\alpha\right) n>|L|+\alpha n$.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies in G, G^{\prime} is bipartite with bipartition $L \sqcup R$.

- Pick $a b \in L$ (or $a b \in R$).
- Case (b): $\operatorname{deg}_{G}(a, b) \leq \frac{\alpha n}{2}$.
- $|R| \geq 2 \delta(G)-\operatorname{deg}_{G}(a, b)>\frac{n}{2}$ and $|L|<\frac{n}{2}$.

$\rightarrow \operatorname{deg}_{G^{\prime}}\left(a^{\prime}\right)+\operatorname{deg}_{G^{\prime}}\left(b^{\prime}\right)>\left(\frac{1}{2}+\alpha\right) n>|L|+\alpha n$.
- $\Omega_{\alpha}\left(n^{3}\right) C_{5}$'s of form $\left(a, a^{\prime}, x, b^{\prime}, b\right)$.

An "ideal" proof for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies in G, G^{\prime} is bipartite with bipartition $L \sqcup R$.

- Pick $a b \in L$ (or $a b \in R$).
- Case (b): $\operatorname{deg}_{G}(a, b) \leq \frac{\alpha n}{2}$.
- $|R| \geq 2 \delta(G)-\operatorname{deg}_{G}(a, b)>\frac{n}{2}$ and $|L|<\frac{n}{2}$.

$\rightarrow \operatorname{deg}_{G^{\prime}}\left(a^{\prime}\right)+\operatorname{deg}_{G^{\prime}}\left(b^{\prime}\right)>\left(\frac{1}{2}+\alpha\right) n>|L|+\alpha n$.
$-\Omega_{\alpha}\left(n^{3}\right) C_{5}$'s of form $\left(a, a^{\prime}, x, b^{\prime}, b\right)$.
- $\Omega_{\alpha}\left(n^{5}\right) C_{5}$ in total.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies and $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and $C_{5} . \quad\left|E_{c}\right|<\frac{\alpha^{2}}{100} n^{2}$.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies and $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and $C_{5} . \quad\left|E_{c}\right|<\frac{\alpha^{2}}{100} n^{2}$.
- Let S be the set of vertices incident to at least $\frac{\alpha}{10} n$ edges in E_{c}.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies and $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and $C_{5} . \quad\left|E_{c}\right|<\frac{\alpha^{2}}{100} n^{2}$.
- Let S be the set of vertices incident to at least $\frac{\alpha}{10} n$ edges in E_{c}.
- $|S| \leq\left|E_{c}\right| / \frac{\alpha n}{10}=\frac{\alpha}{10} n$.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies and $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and $C_{5} . \quad\left|E_{c}\right|<\frac{\alpha^{2}}{100} n^{2}$.
- Let S be the set of vertices incident to at least $\frac{\alpha}{10} n$ edges in E_{c}.
- $|S| \leq\left|E_{c}\right| / \frac{\alpha n}{10}=\frac{\alpha}{10} n$.
- Let $G^{\prime}:=G \backslash E_{c} \backslash S$.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies and $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and $C_{5} . \quad\left|E_{c}\right|<\frac{\alpha^{2}}{100} n^{2}$.
- Let S be the set of vertices incident to at least $\frac{\alpha}{10} n$ edges in E_{c}.
- $|S| \leq\left|E_{c}\right| / \frac{\alpha n}{10}=\frac{\alpha}{10} n$.
- Let $G^{\prime}:=G \backslash E_{c} \backslash S$.
- $v\left(G^{\prime}\right) \approx v(G)$ and $\delta\left(G^{\prime}\right)>\left(\frac{1}{4}+\frac{\alpha}{2}\right) v\left(G^{\prime}\right)$.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies and $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and $C_{5} . \quad\left|E_{c}\right|<\frac{\alpha^{2}}{100} n^{2}$.
- Let S be the set of vertices incident to at least $\frac{\alpha}{10} n$ edges in E_{c}.
- $|S| \leq\left|E_{c}\right| / \frac{\alpha n}{10}=\frac{\alpha}{10} n$.
- Let $G^{\prime}:=G \backslash E_{c} \backslash S$.
- $v\left(G^{\prime}\right) \approx v(G)$ and $\delta\left(G^{\prime}\right)>\left(\frac{1}{4}+\frac{\alpha}{2}\right) v\left(G^{\prime}\right)$.
- oddgirth $\left(G^{\prime}\right) \geq 7$.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies and $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and $C_{5} . \quad\left|E_{c}\right|<\frac{\alpha^{2}}{100} n^{2}$.
- Let S be the set of vertices incident to at least $\frac{\alpha}{10} n$ edges in E_{c}.
- $|S| \leq\left|E_{c}\right| / \frac{\alpha n}{10}=\frac{\alpha}{10} n$.
- Let $G^{\prime}:=G \backslash E_{c} \backslash S$.
- $v\left(G^{\prime}\right) \approx v(G)$ and $\delta\left(G^{\prime}\right)>\left(\frac{1}{4}+\frac{\alpha}{2}\right) v\left(G^{\prime}\right)$.
- oddgirth $\left(G^{\prime}\right) \geq 7$.
- By [Letzer-Snyder], G^{\prime} is bipartite or homomorphic to C_{7}.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta(G)>\left(\frac{1}{4}+\alpha\right) n,>\varepsilon n^{2}$ edge-disjoint C_{5}-copies and $<\varepsilon^{c}$ edge-disjoint copies of C_{3} and C_{5}.

- Let E_{c} be the set of edges in these C_{3} and $C_{5} . \quad\left|E_{c}\right|<\frac{\alpha^{2}}{100} n^{2}$.
- Let S be the set of vertices incident to at least $\frac{\alpha}{10} n$ edges in E_{c}.
- $|S| \leq\left|E_{c}\right| / \frac{\alpha n}{10}=\frac{\alpha}{10} n$.
- Let $G^{\prime}:=G \backslash E_{c} \backslash S$.
- $v\left(G^{\prime}\right) \approx v(G)$ and $\delta\left(G^{\prime}\right)>\left(\frac{1}{4}+\frac{\alpha}{2}\right) v\left(G^{\prime}\right)$.
- oddgirth $\left(G^{\prime}\right) \geq 7$.
- By [Letzer-Snyder], G^{\prime} is bipartite or homomorphic to C_{7}.
- Consider when G^{\prime} is bipartite.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta\left(G^{\prime}\right)>\left(\frac{1}{4}+\frac{\alpha}{2}\right) n, G^{\prime}$ is bipartite, $>\varepsilon n^{2}$ edge-disjoint C_{5} in G.

- Add back E_{c} (edge) and S (vertex) into G^{\prime}.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta\left(G^{\prime}\right)>\left(\frac{1}{4}+\frac{\alpha}{2}\right) n, G^{\prime}$ is bipartite, $>\varepsilon n^{2}$ edge-disjoint C_{5} in G.

- Add back E_{c} (edge) and S (vertex) into G^{\prime}.
- Assume every $u \in S$ has at least $\frac{\alpha}{5} n$ neighbors in L and in R.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta\left(G^{\prime}\right)>\left(\frac{1}{4}+\frac{\alpha}{2}\right) n, G^{\prime}$ is bipartite, $>\varepsilon n^{2}$ edge-disjoint C_{5} in G.

- Add back E_{c} (edge) and S (vertex) into G^{\prime}.
- Assume every $u \in S$ has at least $\frac{\alpha}{5} n$ neighbors in L and in R.
- Otherwise, put u into L if $\operatorname{deg}_{G}(L)<\frac{\alpha}{5} n$. (Same for R)

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta\left(G^{\prime}\right)>\left(\frac{1}{4}+\frac{\alpha}{2}\right) n, G^{\prime}$ is bipartite, $>\varepsilon n^{2}$ edge-disjoint C_{5} in G.

- Add back E_{c} (edge) and S (vertex) into G^{\prime}.
- Assume every $u \in S$ has at least $\frac{\alpha}{5} n$ neighbors in L and in R.
- Otherwise, put u into L if $\operatorname{deg}_{G}(L)<\frac{\alpha}{5} n$. (Same for R)
- Edge $x y$ is of type $/$ if $x, y \in L$ (or R) and is of type $/ /$ if $x \in S$.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta\left(G^{\prime}\right)>\left(\frac{1}{4}+\frac{\alpha}{2}\right) n, G^{\prime}$ is bipartite, $>\varepsilon n^{2}$ edge-disjoint C_{5} in G.

- Add back E_{c} (edge) and S (vertex) into G^{\prime}.
- Assume every $u \in S$ has at least $\frac{\alpha}{5} n$ neighbors in L and in R.
- Otherwise, put u into L if $\operatorname{deg}_{G}(L)<\frac{\alpha}{5} n$. (Same for R)
- Edge $x y$ is of type $/$ if $x, y \in L$ (or R) and is of type II if $x \in S$.
- Any (edge-disjoint) C_{5}-copy contains edge of type I or II.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta\left(G^{\prime}\right)>\left(\frac{1}{4}+\frac{\alpha}{2}\right) n, G^{\prime}$ is bipartite, $>\varepsilon n^{2}$ edge-disjoint C_{5} in G.

- Add back E_{c} (edge) and S (vertex) into G^{\prime}.
- Assume every $u \in S$ has at least $\frac{\alpha}{5} n$ neighbors in L and in R.
- Otherwise, put u into L if $\operatorname{deg}_{G}(L)<\frac{\alpha}{5} n$. (Same for R)
- Edge $x y$ is of type I if $x, y \in L$ (or R) and is of type II if $x \in S$.
- Any (edge-disjoint) C_{5}-copy contains edge of type I or II.
- At least $\frac{\varepsilon n^{2}}{2}$ edges are of type I. Apply the ideal proof.
- Or at least $\frac{\varepsilon n^{2}}{2}$ edges are of type II.

Linear removal lemma threshold for C_{5}

Condition: $H=C_{5}, \delta\left(G^{\prime}\right)>\left(\frac{1}{4}+\frac{\alpha}{2}\right) n, G^{\prime}$ is bipartite, $>\varepsilon n^{2}$ edge-disjoint C_{5} in G.

- Add back E_{c} (edge) and S (vertex) into G^{\prime}.
- Assume every $u \in S$ has at least $\frac{\alpha}{5} n$ neighbors in L and in R.
- Otherwise, put u into L if $\operatorname{deg}_{G}(L)<\frac{\alpha}{5} n$. (Same for R)
- Edge $x y$ is of type I if $x, y \in L$ (or R) and is of type II if $x \in S$.
- Any (edge-disjoint) C_{5}-copy contains edge of type I or II.
- At least $\frac{\varepsilon n^{2}}{2}$ edges are of type I. Apply the ideal proof.
- Or at least $\frac{\varepsilon n^{2}}{2}$ edges are of type II.

Linear removal lemma threshold for C_{5}

Case 1: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type I.

- Pick $a b$ of type I. Say $a, b \in L$.
- Case 1(a): $\operatorname{deg}_{G}(a, b)>\frac{\alpha n}{2}$.

Linear removal lemma threshold for C_{5}

Case 1: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type I .

- Pick $a b$ of type I. Say $a, b \in L$.
- Case 1(a): $\operatorname{deg}_{G}(a, b)>\frac{\alpha n}{2}$.

Linear removal lemma threshold for C_{5}

Case 1: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type I .

- Pick $a b$ of type I. Say $a, b \in L$.
- Case 1(a): $\operatorname{deg}_{G}(a, b)>\frac{\alpha n}{2}$.

- $\Omega_{\alpha}\left(n^{3}\right)$ paths $\left(x_{1}, x_{2}, x_{3}\right)$ with x_{1}, x_{3} red.
- $\Omega_{\alpha}\left(n^{3}\right) C_{5}$'s of form $\left(a, x_{1}, x_{2}, x_{3}, b\right)$.

Linear removal lemma threshold for C_{5}

Case 1: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type I.

- Pick $a b$ of type I. Say $a, b \in L$.
- Case 1(b): $\operatorname{deg}_{G}(a, b) \leq \frac{\alpha n}{2}$.

Linear removal lemma threshold for C_{5}

Case 1: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type I.

- Pick $a b$ of type I. Say $a, b \in L$.
- Case 1(b): $\operatorname{deg}_{G}(a, b) \leq \frac{\alpha n}{2}$.
- $|R|>\frac{n}{2}$ and $|L|<\frac{n}{2}$.

Linear removal lemma threshold for C_{5}

Case 1: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type I.

- Pick $a b$ of type I. Say $a, b \in L$.
- Case 1(b): $\operatorname{deg}_{G}(a, b) \leq \frac{\alpha n}{2}$.
- $|R|>\frac{n}{2}$ and $|L|<\frac{n}{2}$.

Linear removal lemma threshold for C_{5}

Case 1: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type I.

- Pick $a b$ of type I. Say $a, b \in L$.
- Case 1(b): $\operatorname{deg}_{G}(a, b) \leq \frac{\alpha n}{2}$.
- $|R|>\frac{n}{2}$ and $|L|<\frac{n}{2}$.

$-\operatorname{deg}_{G^{\prime}}\left(a^{\prime}\right)+\operatorname{deg}_{G^{\prime}}\left(b^{\prime}\right)>\left(\frac{1}{2}+\alpha\right) n>|L|+\alpha n$.

Linear removal lemma threshold for C_{5}

Case 1: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type I.

- Pick $a b$ of type I. Say $a, b \in L$.
- Case 1(b): $\operatorname{deg}_{G}(a, b) \leq \frac{\alpha n}{2}$.
- $|R|>\frac{n}{2}$ and $|L|<\frac{n}{2}$.

$-\operatorname{deg}_{G^{\prime}}\left(a^{\prime}\right)+\operatorname{deg}_{G^{\prime}}\left(b^{\prime}\right)>\left(\frac{1}{2}+\alpha\right) n>|L|+\alpha n$.
- $\Omega_{\alpha}\left(n^{3}\right) C_{5}$'s of form ($\left.a, a^{\prime}, x, b^{\prime}, b\right)$.

Linear removal lemma threshold for C_{5}

Case 1: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type I.

- Pick $a b$ of type I. Say $a, b \in L$.
- Case 1(b): $\operatorname{deg}_{G}(a, b) \leq \frac{\alpha n}{2}$.
- $|R|>\frac{n}{2}$ and $|L|<\frac{n}{2}$.

- $\operatorname{deg}_{G^{\prime}}\left(a^{\prime}\right)+\operatorname{deg}_{G^{\prime}}\left(b^{\prime}\right)>\left(\frac{1}{2}+\alpha\right) n>|L|+\alpha n$.
- $\Omega_{\alpha}\left(n^{3}\right) C_{5}$'s of form ($\left.a, a^{\prime}, x, b^{\prime}, b\right)$.
- $\Omega_{\alpha}\left(n^{5}\right) C_{5}$ in case 1.

Linear removal lemma threshold for C_{5}

Case 2: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type II.

- At most $|S| n$ edges are of type II.

Linear removal lemma threshold for C_{5}

Case 2: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type II.

- At most $|S| n$ edges are of type II.
- $|S| \geq \frac{\varepsilon n}{2}$.

Linear removal lemma threshold for C_{5}

Case 2: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type II.

- At most $|S| n$ edges are of type II.
- $|S| \geq \frac{\varepsilon n}{2}$.
- Pick $a \in S$. Say $|L| \leq \frac{n}{2}$.

Linear removal lemma threshold for C_{5}

Case 2: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type II.

- At most $|S| n$ edges are of type II.
- $|S| \geq \frac{\varepsilon n}{2}$.
- Pick $a \in S$. Say $|L| \leq \frac{n}{2}$.
- Pick $b \in L$ with $a b \in E(G)$.

Linear removal lemma threshold for C_{5}

Case 2: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type II.

- At most $|S| n$ edges are of type II.
- $|S| \geq \frac{\varepsilon n}{2}$.
- Pick $a \in S$. Say $|L| \leq \frac{n}{2}$.
- Pick $b \in L$ with $a b \in E(G)$.

- $\operatorname{deg}_{G}\left(a^{\prime}, b^{\prime}\right)>|L|+\alpha n$.

Linear removal lemma threshold for C_{5}

Case 2: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type II.

- At most $|S| n$ edges are of type II.
- $|S| \geq \frac{\varepsilon n}{2}$.
- Pick $a \in S$. Say $|L| \leq \frac{n}{2}$.
- Pick $b \in L$ with $a b \in E(G)$.

- $\operatorname{deg}_{G}\left(a^{\prime}, b^{\prime}\right)>|L|+\alpha n$.
- $\Omega_{\alpha}\left(n^{3}\right) C_{5}^{\prime}$'s of form ($\left.a, a^{\prime}, x, b^{\prime}, b\right)$.

Linear removal lemma threshold for C_{5}

Case 2: at least $\frac{\varepsilon n^{2}}{2}$ edges are of type II.

- At most $|S| n$ edges are of type II.
- $|S| \geq \frac{\varepsilon n}{2}$.
- Pick $a \in S$. Say $|L| \leq \frac{n}{2}$.
- Pick $b \in L$ with $a b \in E(G)$.

- $\operatorname{deg}_{G}\left(a^{\prime}, b^{\prime}\right)>|L|+\alpha n$.
- $\Omega_{\alpha}\left(n^{3}\right) C_{5}^{\prime}$'s of form ($\left.a, a^{\prime}, x, b^{\prime}, b\right)$.
- $\Omega_{\alpha}\left(n^{5}\right) C_{5}$ in case 2.

Open questions

- Are $\delta_{\text {poly-rem }}(H)$ and $\delta_{\text {lin-rem }}(H)$ monotone?

Open questions

- Are $\delta_{\text {poly-rem }}(H)$ and $\delta_{\text {lin-rem }}(H)$ monotone?
- Is there a 3 -chromatic H with $\frac{1}{5}<\delta_{\text {poly-rem }}(H)<\frac{1}{3}$?

Open questions

- Are $\delta_{\text {poly-rem }}(H)$ and $\delta_{\text {lin-rem }}(H)$ monotone?
- Is there a 3 -chromatic H with $\frac{1}{5}<\delta_{\text {poly-rem }}(H)<\frac{1}{3}$?
- Is it true that $\delta_{\text {poly-rem }}(H)>\frac{1}{5}$ when H is 3 -chromatic and H is not homomorphic to C_{5} ?

Open questions

- Are $\delta_{\text {poly-rem }}(H)$ and $\delta_{\text {lin-rem }}(H)$ monotone?
- Is there a 3 -chromatic H with $\frac{1}{5}<\delta_{\text {poly-rem }}(H)<\frac{1}{3}$?
- Is it true that $\delta_{\text {poly-rem }}(H)>\frac{1}{5}$ when H is 3 -chromatic and H is not homomorphic to C_{5} ?
- Is $\delta_{\text {poly-rem }}(H)=\delta_{\text {hom }}\left(\mathcal{I}_{H}\right)$?

The End

Questions? Comments?

